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Abstract We compare the thermodynamic entropy of a quantum Brownian oscillator de-
rived from the partition function of the subsystem with the von Neumann entropy of its re-
duced density matrix. At low temperatures we find deviations between these two entropies
which are due to the fact that the Brownian particle and its environment are entangled. We
give an explanation for these findings and point out that these deviations become important
in cases where statements about the information capacity of the subsystem are associated
with thermodynamic properties, as it is the case for the Landauer principle.
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1 Introduction

Quantum systems that are not perfectly isolated from their environment are subject to dissi-
pation and decoherence. Within the theory of quantum dissipative systems [7, 13, 37] models
with system-reservoir interaction such as Quantum Brownian motion [11, 17] have been de-
veloped to describe these phenomena. The results are of great interest for applications in the
field of mesoscopic systems, quantum computation [30] and quantum information theory of
continuous variable systems [6, 12].

In last years the behavior of open quantum systems has also raised questions about the
validity of fundamental laws of thermodynamics [4, 31, 35] and has again been addressed
by recently published papers [18, 19, 23]. The central point in this discussion is the proper
a definition of the thermodynamic quantities of interest, especially the entropy. For this
reason we want to provide a comprehensive overview of the two most common measures of
the entropy of an open quantum system—the von Neumann entropy and the thermodynamic
entropy—and point out that these two quantities might deviate in the quantum Brownian
motion model.
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The entropy of a system in thermodynamic equilibrium was originally defined by Boltz-
mann as the logarithm of the number of microstates consistent with the properties of the
macrostate—in quantum mechanics the logarithm of the dimension of the relevant Hilbert
space. For a micro-canonical ensemble (where all the accessible microstates are equally
likely) it is equivalent to the statistical entropy. The statistical entropy of a quantum system
is given by the von Neumann entropy. The von Neumann entropy of a subsystem can be de-
rived from the reduced density matrix [32]. In quantum information theory it is a commonly
used measure of entanglement and decoherence [6] and can be understood as a measure of
the amount of information gained by a unique quantum measurement of localization. The
thermodynamic entropy, on the other hand, is associated with the amount of heat contained
in the subsystem. Heat is defined as the part of the internal energy of a system which cannot
be transferred into mechanical work. The thermodynamic entropy can be calculated from
the partition function of the system and its free energy respectively.

As long as the application of the von Neumann entropy is restricted to an information-
theoretical context and the thermodynamic entropy is applied when examining the validity
of the thermodynamic laws no interpretational problems will arise. The situation is differ-
ent in cases where statements about the information content of a system are connected to
thermodynamic properties, as will be shown in the following.

This paper is organized as follows. In the first part of this paper we give a short re-
view of the Caldeira-Leggett model of quantum Brownian motion which is the basis for
discussion. In the main part the thermodynamic entropy and the von Neumann entropy are
calculated and compared. Finally we discuss the significance of the deviations with regard
to an information-theoretical point of view, namely by means of the Landauer principle.

2 Caldeira-Leggett Model of Quantum Brownian Motion

The statistical properties of the stationary state are discussed here on the basis of the
Caldeira-Leggett model [9–11] of quantum Brownian motion, often referred to as indepen-
dent oscillator model [15, 16]. It is a system-plus-reservoir model where the total Hamil-
tonian consists of three parts

H = Hs + Hb + Hint, (1)

with Hs as Hamiltonian of the subsystem which interacts via the Hamiltonian Hint with a
bath that is described by a collection of a large number N of harmonic oscillators Hb =∑

i �ωi(b
†
i bi + 1). In detail the Hamiltonian of the Caldeira Leggett model is given by

H = p2

2m
+ V (q) +

N∑

i=1

[
p2

i

2mi

+ miω
2
i

2

(

xi − ciq

miω
2
i

)2]

, (2)

where q and p are the Heisenberg-operators of coordinate and momentum of the Brownian
oscillator moving in an harmonic potential V (q) = 1

2 mω2
0q

2 and coupled to a bath of N

independent harmonic oscillators with variables xi , pi and equidistant frequencies ωi = i�.
The bath is characterized by its spectral density

J (ω) = π

N∑

i=1

c2
i

2mωi

δ(ω − ωi) = γωΓ 2

ω2 + Γ 2
(3)
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with cut-off frequency Γ = N� and system-bath coupling strength γ . The interaction is
bilinear in the coordinates q and xi of the subsystem and the bath respectively with coupling
parameters ci = √

2�miωiJ (ωi)/π . The self-interaction term (proportional to q2) in the
Hamiltonian

Hint =
N∑

i=1

[

−cixiq + c2
i

2miω
2
i

q2

]

(4)

renormalizes the oscillator potential to ensure that the observable frequency is close to bare
oscillator frequency ω0. From the Hamiltonian (2) the Heisenberg equations of motion for
the operators q and p and the bath variables xi , pi are received. By eliminating the bath
degrees of freedom the quantum Langevin equation [14, 17] of a particle moving in the
potential V (q) can be derived:

mq̈(t) + dV (q)

dq
+

∫ t

0
dt ′γ (t − t ′)q̇(t ′) = η(t) − q(0)γ (t), (5)

with damping kernel

γ (t) = 2

π

∫ ∞

0
dω

J (ω)

ω
cosωt = γΓ e−Γ t (6)

and the noise term η(t) characterized by its correlation function [20]

K(t − t ′) = �

π

∫ ∞

0
dωJ (ω) coth

(
1

2
β�ω

)

cosω(t − t ′). (7)

The stationary state of the Brownian particle is fully characterized the reduced density ma-
trix ρs of the subsystem [22, 37]

〈q|ρs |q ′〉 = 1
√

2π〈q2〉 exp

[

− (q + q ′)2

8〈q2〉 − (q − q ′)2

2�2/〈p2〉
]

, (8)

where the equilibrium fluctuations 〈q2〉, 〈p2〉 and the susceptibility χ̃ (ω) = [mω2
0 − mω2 −

iωγ̃ (ω)]−1 with γ̃ (ω) = ∫ ∞
0 γ (t)eiωt are connected by the quantum fluctuation-dissipation-

theorem which gives

〈q2〉 = �

π

∫ ∞

0
dω coth

(
1

2
β�ω

)

Im{χ̃ (ω)}, (9)

〈p2〉 = �

π

∫ ∞

0
dωm2ω2 coth

(
1

2
β�ω

)

Im{χ̃(ω)} (10)

for the stationary correlations.

3 Calculation of Entropies

3.1 Partition Function and Thermodynamic Entropy

Starting point in the calculation of thermodynamic quantities is the partition function. For
dissipative quantum systems such as the QBM model it can be derived by influence func-
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tional path integral methods [21],

Z =
∮

D[q(t)]e−SE
eff[q(t)]/� (11)

with effective Euclidean action SE
eff[q(t)] and is given by

Z = 1

β�ω0

∞∏

n=1

ν2
n

ω2
0 + ν2

n + νnγ̂ (νn)
, (12)

with Laplace transform γ̂ (z) of (6) and Matsubara frequencies νn = 2πn/�β , n =
±1,±2, . . . . For the Drude model (3) the partition function can be rewritten in the form

Z = ω0

2πν

Γe(λ1/ν)Γe(λ2/ν)Γe(λ3/ν)

Γe(Γ/ν)
, (13)

with the varGamma function Γe(x), ν = |ν1| and λj , j = 1, . . . ,3 as three characteristic
frequencies (poles) of the non-Markovian damped harmonic oscillator. The free energy

F = −kT ln Z = kT

[

ln
Γe(Γ/ν)

ω0/(2πν)
−

3∑

j=1

lnΓe(λj/ν)

]

(14)

can also be written in the form [16, 19]

F(T ) = 1

π

∫ ∞

0
dωf (ω,T ) Im

{
d ln χ̃ (ω)

dω

}

, (15)

with f (ω,T ) = kT ln[2 sinh( 1
2 β�ω)] as free energy of the uncoupled harmonic oscillator.

The thermodynamic entropy

S(T ) = −∂F

∂T
= 1

π

∫ ∞

0
dω s(ω,T ) Im

{
d ln χ̃ (ω)

dω

}

, (16)

with s(ω,T ) = β�ω

eβ�ω−1
− ln(1 − e−β�ω) as well as the internal energy U = F + T S =

− ∂
∂β

ln Z and the specific heat C = T ∂S
∂T

can then be calculated straightforward. At zero bath
temperature the entropy vanishes limT →0 S(T ) = 0 as required by the Third Law of thermo-
dynamics [18, 23]. In case of an ohmic heat bath, the entropy vanishes linearly with T .
A interpretation of the free energy (15) will be given in section V within the discussion on
cyclic thermodynamic processes.

3.2 Ground State Energetics at Zero Temperature

Despite the fact that the entropy (16) vanishes for T → 0 the energy of the subsystem fluc-
tuates. Considering the subsystems Hamiltonian Hs as an observable of interest, projective
measurements of Hs can find the system in higher energy states even at zero temperature
[8, 25]. This is the case when subsystem and environment are entangled and therefore the
ground state does not factorize into a product of a system wave function and a bath wave
function. Formally it is a consequence of the fact that the Hamiltonian Hs does not commute



Information and Entropy in Quantum Brownian Motion 1165

with the Hamiltonian H of the total system. The mean energy of an oscillator coupled to a
heat bath which is given by the expression

〈Hs〉 = Tr[ρsHs] = 1

2m
〈p2〉 + 1

2
mω2

0〈q2〉

= m�

2π

∫ ∞

0
dω (ω2

0 + ω2) coth

(
1

2
β�ω

)

Im{χ̃ (ω)} (17)

is greater than its ground state energy for T → 0:

〈Hs〉T =0 = m�

2π

∫ ∞

0
dω (ω2

0 + ω2) Im{χ(ω)} >
1

2
�ω0. (18)

The probability to measure the harmonic oscillator in the ground state or an excited state
may be found by considering the diagonal matrix elements ρnn of the density matrix ρs in
the energy basis

ρnm = 〈n|ρs |m〉 =
∫

dqdq ′〈n|q〉〈q|ρs |q ′〉〈q ′|m〉, (19)

where 〈q|n〉 = (
√

π2nn!)−1/2
√

bHn(bq)e−b2q2/2 are the wave functions of the harmonic os-
cillator with Hermite polynomials Hn and b = √

mω0/�. The diagonal elements can then be
expressed explicitly by

ρnn =
√

4

D
(d2 − a2)n/2Pn

[
d√

d2 − a2

]

, (20)

where Pn are the Legendre polynomials of order n and the dimensionless variables x =
2b2〈q2〉, y = 2〈p2〉/(�2b2), D = 1 + x + y + xy, a = (y − x)/D and d = (xy − 1)/D have
been introduced [25]. As can be seen from Fig. 1a the density matrix ρnm is not strictly
diagonal in this basis because the wave functions of the unperturbed oscillator are not the
eigenfunctions of ρs . Furthermore, the eigenvalues pn of ρs(q, q ′) and its eigenfunctions
fn = (√

π2nn!)−1/2 √
cHn(cq)e−c2q2/2 with c = [〈p2〉/(�2〈q2〉)]1/4 are obtained as solution

of the problem
∫

dq ′ρ(q, q ′)fn(q
′) = pnfn(q) [4]. Making use of the purity

μ = Tr ρ2
s =

∫

dqdq ′〈q|ρs |q ′〉〈q ′|ρs |q〉 = �/2
√〈q2〉〈p2〉 (21)

the eigenvalues can be expressed by

pn = 2μ/(1 + μ)
[
(1 − μ)/(1 + μ)

]n
. (22)

Figure 1a visualizes the distribution of the density matrix elements in the energy eigenba-
sis of the QBM-state at low temperatures. One can see that the density matrix in energy
eigenbasis is not strictly diagonal and that the distribution on the diagonal deviates from the
Boltzmann distribution. This is due to the interaction which correlates system and environ-
ment and additionally leads to a squeezed-like state. This becomes obvious when compar-
ing Fig. 1a to Fig. 1b which shows the distribution of a squeezed vacuum state. Unlike the
squeezed vacuum state, the stationary QBM-state is not a pure state with minimal uncer-
tainty but a mixed state even at zero bath temperature. Diagonalizing the density matrix (8)
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Fig. 1 (Color online) Density matrix elements ρnm of the stationary QBM-state (left) compared to the den-

sity matrix elements of a squeezed vacuum state |ξ 〉 = eξ∗a2/2−ξ(a†)2/2|0〉 (right) with equal mean occupa-
tion number 〈n〉

does not just yield one eigenvalue unequal to zero (p0 = 1, pn = 0 for n > 0), but also
pn > 0 for n > 0. Thus, for non-weak system bath interaction with γ > 0 and zero tem-
perature the purity is μ < 1 and the von Neumann entropy Sv(ρs) > 0. Despite the same
occupation number 〈n〉 in Figs. 1a and 1b, the purity and the von Neumann entropy are
different in both cases.

The environment-induced squeezing increases the uncertainty product �q�p compared
to a thermal state. This can be seen from Fig. 2a which shows possible and feasible com-
binations of the second moments of p and q . Physical states lie above the hyperbola which
characterizes the set of squeezed vacuum states. Thermal states with Boltzmann distribution
are given by the bisecting line. The data points in the gray shades area are QBM-states for
randomly chosen combinations of parameters (γ,Γ,T ). Possible pairs of the mean occu-
pation number n̄ and its variance (�n)2 for arbitrary combinations of γ , Γ and T in the
QBM model are bounded from below by the variance of a thermal state 〈n〉(〈n〉 + 1) and
from above by the variance of a squeezed vacuum state 2〈n〉(〈n〉 + 1). This is illustrated by
Fig. 2b.

The statistical properties of the stationary QBM-state hence are a consequence of the
thermal noise, environment-induced squeezing and existing quantum correlations between
system and bath. The distribution of the diagonal elements in the energy eigenbasis thus
deviates from the Boltzmann distribution. Figure 3 visualizes the difference between (22)
and ρnn evaluated in (19). The population of higher levels is increased while the population
of lower levels is reduced compared to a thermal distribution.

3.3 Reduced Density Matrix and von Neumann Entropy

Since the probability to find the system in an excited state does not vanish even at zero tem-
perature, the density operator ρs does not reduce to the projection onto the non-degenerate
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Fig. 2 (Color online) Left: Possible pairs of the normalized QBM-state variances (�q̃)2 = (�q)2/σ0 and
(�p̃)2 = (�p)24σ 2

0 /�
2. Right: Possible pairs of the QBM-state mean occupation number n̄ and its vari-

ance (�n)2

Fig. 3 (Color online)
Distribution of the diagonal
density matrix elements ρnn of a
QBM-state with 〈n〉 = 1/2 (blue
line) compared to a squeezed
vacuum state (yellow line) and a
thermal state (red line) with the
same occupation number (on a
logarithmic scale). The
distribution of the eigenvalues pn

given by (22) is the dashed gray
line (Γ = 100ω0, γ = 0.93ω0)

ground state of the system Hs and thus does not describe a pure state with statistical en-
tropy equal to zero. The uncertainty about the measurement outcome is expressed by the
von Neumann entropy Sv(ρs) of the reduced density matrix ρs which is in the case of a
Gaussian state given by [1, 4, 34]:

Sv(ρs) = −k Tr[ρs lnρs] = −k
∑

n

pn lnpn = k
1 − μ

2μ
ln

1 + μ

1 − μ
− k ln

2μ

1 + μ
.
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Introducing the effective frequency and mass [37]

ωeff = 2

�β
arcoth(μ), meff =

√〈p2〉/〈q2〉
ωeff

, (23)

the density matrix can be written in the form

ρs = Z−1
eff exp (−βHeff) , (24)

with effective partition function Z−1
eff = 2 sinh (ωeff�β/2) and Hamiltonian Heff = p2

2meff
+

1
2meffω

2
effq

2. The von Neumann entropy and its eigenvalues pn can than be expressed by

Sv(ρs) = β�ωeff

eβ�ωeff − 1
− ln

(
1 − e−β�ωeff

)
, (25)

and pn = Z−1
eff e

−βEn with En = �ωeff(n + 1/2). However, notice that Sv(ρs) 	= Seff =
∂

∂T
(kT lnZeff) due to the temperature dependence of ωeff. Since ωeff → 0 for T → 0 the

effective energy levels En become very narrowly spaced near zero temperature indicating
that the ground state is a mixture. Sv(ρs) is the minimal amount of classical information
that is accessible through measurements on the quantum state ρs [30] and is thus smaller
than the Shannon entropy

∑
n ρnn logρnn with matrix elements ρnn given in the basis of

the unperturbed eigenfunctions of the harmonic oscillator (which are not the eigenfunctions
of ρs ).

4 Comparison of Entropies

The von Neumann entropy Sv of the subsystem ρs and the thermodynamic entropy S(T ) of
the Brownian particle deviate from each other as one can see from Fig. 4:

Sv(ρs) ≥ S(T ) for γ > 0. (26)

Fig. 4 (Color online) Temperature dependence of the von Neumann entropy Sv(ρs) (blue line), thermody-
namic entropy S(T ) (dark line) and function s(ω,T ) (red line) for system-bath-coupling γ = 10mω2

0/Γ = 1
compared to the entropy of the uncoupled harmonic oscillator s(ω,T ) (dashed lines for the corresponding
differences Sv(ρs) − s(ω,T ) (blue), S(T ) − s(ω,T ) (black) and Sv(ρs) − S(T ) (yellow)). Parameters are
Γ = 10ω0 and γ ≈ 2.43ω0, thus having 〈Hs 〉T =0 = �ω0
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Even at T → 0 the von Neumann entropy Sv is larger than zero while its thermodynamic
entropy vanishes approximately linearly with T . This effect of Sv,T →0 	= 0 which has been
extensively discussed in Refs. [3, 4] is due to the entanglement between subsystem and
bath which prevents the subsystem from reaching a pure state for T = 0. It is just in the
weak coupling limit γ → 0 that the von Neumann entropy (23) and the thermodynamic
entropy (16) become equal and tend towards the entropy s(ω0, T ) of a harmonic oscillator
in a heat bath at temperature T , characterized by the Gibbs distribution.

The reason for the deviation in entropies may be seen in the fact that the density matrix ρs

cannot be written in canonical form

ρs 	= 1

Z
exp (−βHs) . (27)

The statistical entropy can be identified with the thermodynamic entropy just if ρ =
Z−1 exp(−βHs) is the canonical density matrix with Z = Tr[exp(−βHs)], which means

Sv(ρ) = − Tr[ρ lnρ] = β Tr[ρHs] + Tr[ρ lnZ] = β〈Hs〉 + lnZ

= β(U − F) = S(T ). (28)

In the same manner, the heat δQ connected to the thermodynamic entropy by the Clausius
equality δQ = T dS (for quasi-static processes) can only be associated with the part of dU

representing a statistical redistribution in phase space Tr[dρsHs] if ρs is given in canonical
form:

dSv = −Tr[dρ lnρ] = Tr[dρ lnZ] + β Tr[dρHs] = β Tr[dρHs] = βδQ = dS(T ). (29)

While the choice of the entropy (16) implies that this thermodynamic entropy of the Brown-
ian oscillator S(T ) and the (unperturbed) bath Sv(ρb) are additive—since all correlations
between bath and oscillator are included in the subsystems entropy—the von Neumann en-
tropy (23) for the system and the bath entropy are non-additive

Sv(ρs) + Sv(ρb) − Isb = Sv(ρtot) = S(T ) + Sv(ρb), (30)

with non-zero mutual information/entropy Isb measuring the correlations between the
parts S and B of the entangled system ρtot 	= ρs ⊗ ρb . The conditional entropy S(S|B) =
Sv(ρs) − Isb can be identified with the thermodynamic entropy (16). This entropy measures
the uncertainty about the state of S if the state of B is known [30]. It is the shift in the total
von Neumann entropy Sv(ρtot) − Sv(ρb) due to the presence of the Brownian particle and
thus differs strongly from the von Neumann entropy Sv(ρs) of the particle alone.

5 Cyclic Thermodynamic Processes

The theoretical result of a mean energy 〈Hs〉T →0 > 1
2 �ω0 has raised the question whether

this is a contradiction to the second law: if the particle is subtracted from the bath the dif-
ference in energy could be used to perform work. A cyclic process could be constructed
that receives energy for work generation from a single heat bath. That such a construction
of a perpetuum mobile of the second kind is not possible was recently shown by Ford and
O’Connell [19] for the QBM-model with Lorentzian bath spectral density and by Kim and
Mahler [26] for arbitrary bath spectra. The basic argument is the principle of minimal work
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which states that the minimal amount of work that is needed to bring the system from one
thermodynamic state to another of the same temperature, is equal to the difference in the
free energy of these two thermodynamic states [27]. If the Brownian oscillator is added to
or subtracted from the bath the difference in free energy is equal to F(T ) in (14). This can
be seen from the following considerations. The free energy of the total system is given by
the sum

Ftot(T , γ ) =
∑

k

f (ω′
k, T ), (31)

where the eigenfrequencies ω′
k of the coupled system follow as the roots of a transcenden-

tal eigenvalue equation [4] and f (ω′
k, T ) = kT ln 2 sinh( 1

2β�ω′
k). For ωk  � the initial

frequencies ωk = k� get shifted to

ω′
k = ωk − �

π
φ(ωk) for ωk  �, (32)

where φ(ω) is related to the susceptibility χ̃ (ω) by

φ(ω) =
∫ ω

0
dν Im

{
d ln χ̃ (ν)

dν

}

=
3∑

j=1

arctan
ω

λj

− arctan
ω

Γ
. (33)

Using the identity (for small �)

∑

k

f (ω′
k) → 1

�

∫ ∞

0
dω′

k

dωk

dω′
k

f (ω′
k), (34)

the total free energy (31) can be written as

Ftot(T , γ ) =
∫ ∞

0
dω

[
1

�
+ 1

π

dφ(ω)

dω

]

f (ω,T ) (35)

=
∑

k

f (ωk, T ) + 1

π

∫ ∞

0
dωf (ω,T )

dφ(ω)

dω
(36)

= Fb(T , γ = 0) + F(T ), (37)

where Fb(T , γ = 0) is the free energy of the undisturbed bath in absence of the particle.
Thus, the shift in free energy due to the coupling of the central oscillator to the bath is
F(T ). The related increase in internal energy is then expressed by U(T ) = F(T ) + T S(T ).
However, the mean energy of the oscillator is given by (17). To ensure the validity of the
second law at zero temperature, the work which has to be performed has to be larger than the
mean energy. Because of F(0)−〈H 〉T =0 ≥ 0 this is the case [19, 26]. Since at T → 0 all the
employed work is converted into internal energy U(0) of the total system, the difference can
be interpreted as interaction energy Uint (which is different from 〈Hint〉!). Due to the infinite
number of bath modes this increase in internal energy does not raise the bath temperature.
The interaction energy is given by the partial differentiation of the free energy (14) with
respect to the cut-off frequency [4]

Uint = U − 〈Hs〉 = Γ
∂F

∂Γ
. (38)
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With these considerations the zero temperature behavior of the thermodynamic entropy be-
comes plausible. The free energy F(0) is completely converted into internal energy U(0),
that is 〈Hs〉 and Uint. This increase in internal energy is not accompanied by a flow of heat
or a change in entropy at zero temperature, thus S(0) = 0 and Sv(ρtot) = Sv(ρb(0)). On the
other hand, variations of the oscillator parameters dω0, dm are related to a change in entropy
dS(T ) and a heat flow respectively that can be calculated by comparing the total differential

dU = d〈Hs〉 + dUint = Tr[ρsdHs] + Tr[Hsdρs] + dUint = δWs + δQs + dUint (39)

with the total differential dU = dF + T dS. A short calculation reveals that dF = δWs :=
Tr[ρsdHs] and thus one has

δQ := T dS(T ) = δQs + dUint. (40)

Defining the total heat flow δQ accompanying a variation of the entropy S(T ) by the Clau-
sius (in)equality δQ = T dS(T ) it becomes clear that a change in the thermodynamic entropy
of the Brownian oscillator does not just lead to a heat flow expressed by a redistribution in
phase space of the subsystem Tr[Hsdρs] =: δQs but also to a flow of heat to the cloud of
surrounding bath modes which is δQs = −dUint for T → 0. For a recent discussion on prob-
lems arising from a definition of local heat and work in bipartite quantum systems see e.g.
Ref. [36].

6 Consequences for Quantum Information Theory

From an information-theoretical point of view, these considerations become important if
statements about the information capacity of a quantum system are connected to thermo-
dynamic properties. We may cite the Landauer principle [5, 28] as an example here. This
principle is based on the Clausius inequality and states that many-to-one-operations like era-
sure of information requires the dissipation of energy. Deleting one bit of information of the
systems memory is accompanied by a released amount of heat of at least kT ln 2:

∣
∣
∣
∣

δQ

dS/(ln 2)

∣
∣
∣
∣ ≥ kT ln 2. (41)

In our case we apply the Landauer principle to quantum systems in which classical infor-
mation is encoded. Since the optimal erasure procedure, i.e. the one that creates the least
amount of heat is the one where the quantum measurements are made in the basis of the
eigenstates of ρs , the relevant entropy is the von Neumann entropy Sv(ρs) of the system.
The erasure of information is connected to a reduction of entropy, and thus cannot be re-
alized in a closed system. Therefore the information-carrying system has to be coupled to
the environment. In a low temperature environment the coupling may be relatively strong
compared to the thermal energy and system and bath become correlated.

Of course, the customary understanding of Landauer’s principle is that it applies to sit-
uations in which the information-bearing system is uncorrelated with the environment both
initially and finally. Classically Landauer’s principle holds as long as the second law of ther-
modynamics is applicable in the given situation. With existing correlations between system
and environment both principles—the Landauer bound as well as the second law—are not
applicable because the basic requirement of additivity is not fulfilled. So, why considering
the Landauer principle in this context? The point is, that in our case of quantum Brownian
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Fig. 5 (Color online)
Temperature dependence of the
ratio |δQ/dSv ln 2| (in bits) with
the heat defined by
δQ = T dS(T ) for quasi-static
variations of the oscillator
frequency dω0. The
system-bath-couplings are
chosen to be γ = 0.1ω0 (dark
line) and γ = 0.5ω0 (gray line).
At low T deviations from the
Landauer bound kT ln 2 (dashed
line) occur. Here Γ = 10ω0

motion the second law of thermodynamics holds as has been pointed out in the literature [18,
19, 23] while the Landauer principle may not be applicable as long as the von Neumann en-
tropy of the reduced density matrix is seen as the relevant quantity to describe the classical
information content of the quantum state of the damped harmonic oscillator. The reason for
this is, that the von Neumann entropy and the thermodynamic entropy may deviate from
each other for mesoscopic quantum systems that are sufficiently strong entangled with their
environment. Since the statistical entropy and the heat are defined separately they do not
necessarily have to fulfill the Clausius inequality [3, 24]. A second reason for considering
the Landauer principle in this context is, that we are able to quantify the deviations from the
Landauer bound that are resulting from the quantum correlations between the information
carrying subsystem and its surrounding bath. At least it might be interesting to see in which
way deviations from the Landauer principle occur if the assumption of weak interaction
between system and bath is gradually abandoned.

As an example for our system we show in Fig. 5 the temperature dependence of the heat
exchange δQ divided by the entropy change, in this case of the von Neumann entropy dSv

(in bits). The heat is defined by δQ = T dS(T ) for quasi-static variations of the oscillator
frequency dω0. Since δQs and δQint can have different signs, the heat flow δQ is lowered
compared to the term δQs . Thus, as it can clearly be seen, this ratio for small temperatures
is below the Landauer bound of kT ln 2. Actually at low temperature and high cut-off fre-
quency this quantity starts out quadratically as a function of temperature instead of linearly,
which is due to the fact that the von Neumann entropy term is larger than its canonical form
(thermodynamic entropy) and therefore the Landauer principle in this case gives only an
upper bound to the erasure of information.

7 Summary and Conclusions

In this paper we have studied the statistical and thermodynamic properties of the station-
ary QBM-state. We have shown that an identification of the thermodynamic entropy of the
damped quantum oscillator with its von Neumann entropy is not valid except in the weak
coupling limit. We have chosen Landauer’s principle to determine these deviations qualita-
tively and quantitatively.

The statistical entropy associated with the stationary quantum state is the von Neumann
entropy. The main features of the subsystem (e.g. mixed state at zero temperature, accessible
information by measurements) are captured by the von Neumann entropy of the reduced
density matrix. As a well established measure of entanglement and decoherence in open
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quantum systems it is commonly in use—but interpretational problems may arise if it is
related to thermodynamic quantities.

The thermodynamic entropy is the correct choice when cyclic processes are considered
(e.g. to show that no work can be extracted from a single thermal bath [2, 19, 29, 33]). The
exchange of heat between the system and the environment during quasi-static processes is
related to the thermodynamic entropy by the Clausius (in)equality. However, it is mislead-
ing to speak of the entropy of the Brownian particle as we have pointed out. The thermody-
namic entropy can just be identified with the statistical entropy when ρs takes the form of
the canonical density matrix. This is just the case for negligible interaction between subsys-
tem and environment. As long as the application of the von Neumann entropy is restricted
to an information-theoretical context and the thermodynamic entropy is applied when ex-
amining the validity of the thermodynamic laws no interpretational problems will arise. The
situation is different in cases where statements about the information content of a system are
connected to thermodynamic properties as has been demonstrated by means of the Landauer
principle. In this case the entanglement between the subsystem and the bath is responsible
for the fact that the erasure of information—measured by the decrease in the von Neumann
entropy of the reduced density matrix—is accompanied by a released amount of heat that
may be below the Landauer bound.
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